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Frc;. 8. Dimsnaionless heat flow through frozen region as a 
function of physical parameter involving absorbed incident 

radiation. 

The results are given in Figs. 7 and 8 which show the con- 

figurations of the free boundary and the heat flow through 

the region as a function of the physical parameter A. The 

large values of A are associated with large values of the 

absorbed radiative heat flux, or small values of the cooling 

temperature below the surface temperature. These conditions 
yield thin conducting regions. The large A are also associated 

with large values of the dimensionless heat flow as shown in 

Fig. 8. 
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INTRODUCTION 

A DISTRIBUTED parameter system represented by the one- 

dimensional heat conduction equation subject to both 

radiation and convection is studied. In the analysis the 

input function is assumed to be sampled and held and by 

employing the Laplace transform and the z-transforms 

respectively, a discrete-time system of equations is obtained 

for digital computer solution. Results obtained were in 

excellent agreement with published ones of Crosbie and 

Viskanta [il. The method of solution is a direct one and no 

iteration techniques are required 

STATEMENT OF ‘DIE PROBLEM 

We shall be concerned with the problem of obtaining the 

transient heating and cooling solutions for the onedimen- 

sional slab initially at a uniform distribution and then 

subjected to both radiation and convection at one of its 

boundaries. The assumptions made and the nomenclature 

used are identical to those of Crosbie and Viskanta [l] and 

hence will not be repeated here. The basic system equation 

is then given by 

au 
&Y,C) = $k1); t>o 

o<x< 1 
(1) 

and the initial and boundary conditions are 

u(u, 0) = ui 

g(O.r)=O 

gc1, t) = - g[u(l, 0, cl, (2c) 

Here a(.~, t) is the temperature of the system as a function of 

the time t and the spatial coordinate X. The dimensionless 

temperatures and the heat flux are defined in Table 1 of [ 11. 
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Formation of nwdel equations 
Since equation (1) is linear, there results upon Laplace 

transforming same, the following ordinary differential 
eauation 

d’u. 
Mx, 4 = ds2 (x, s) 

Here the initial condition is assumed zero; the initial 
condition as given by equation (2a) may be incorporated 
into the model equations. The solution to equation (3) is 

u(x, s) = C, cash [(Js) X] + C, sinh [(\ls) x] (4) 

Employing the boundary condition at z = 0 gives Cz = 0. 
Assuming the input function at the boundary x = 1 is 
sampled and held yields the following 

(1 - eesP) m g(1, S) = ~ 
S 

,TO -g[u(l, kP)l eeflPr (5) 

Employing equation (5) to obtain C, yields the following 
solution 

u(x, s) = (1 - emsP) 
cash [(Js)x] m 

s(Js) sinh I( ,& 

The inverse of (6) is given by 

-g[u(l, kP)] e-kPs. (6) 

u(x, kP) = (1 - e -“‘) 
i 

f kPg(kP)e-“” 
li=O 

+ f g(kP)H,(x)e-kP” 
I=0 

+ f f g(kP) exp (- n*n’kP) H,(x) eekps 
1 

(7) 
v=, k=O 

where t has been replaced by the discrete-time kP, 

-g[u(l, WI by g&P) and 

H,(x) = (3~’ - 1)/6 (8) 

-2(-l) 
H,(x) = 7 n2 ---cos(n7r.u); n = 1,2,.. ., co. (91 

To obtain equation (7) in discrete-time form the .z trans- 
form is employed Hence 

z = es’. (101 

Hence equation (7) becomes 

u(x, 2) = + $O g(kP) kP 2-I’ + f g(kP) H,(s) zfk 
I=0 

+ “zl kzO g(kP) exp (- n%‘kP) H,(x) z-ii (11) 

Employing the closed form for the infinite series in z, there 
results 

PsW’) 
u(x, z) = __ z _ 1 + g(W HOW 

m 

+ c gW=) H,(x) s (12) 
n 

“=I 

where 

h, = exp(-n2n2P). (13) 

Next, the number of terms to retain in the infinite series 
in n is readily determined by observing the decay rate of the 
various exponential terms. If 4 terms are retained, then the 
coefficient H,(x) is set so as to satisfy the assumed zero 
initial condition. This will involve negligible error. Hence 

H,(x) = - [H,(x) + H,(x) + + H,_ ,Cx)]. (14) 

Also 

z-l 
H,(x) __ 

[ 1 

H,(x) 
z - h, 

= H,(x) + z-h (15) 
n 

where 

H,(x) = - H,(x) [I - h,] (16) 

Hence employing equations (14t(16), equation (12) may 
be written as the following upon multiplying numerator and 
denominator by z-l 

v 

u(x, z) = Pz- 13!!EfL + g(kP) 

1 -z-’ c 
Hj,(x)~-‘-------- 

1 - z-‘h.’ (17) 
I 

j=1 

Let 

W,Jz) = g(kP)/(l - z-l hj); j=O,1,2 ,..., q. (18) 

Then 

W,(z) = g(kP) + z-l hj Wj(z). (19) 

Referring to Fig. 1 the state equations are then given by 
(here the output of each z-l block is by definition a state 
variable) 

W,(k + l)P = K(kP) + g(kP) 

W,(k + 1) P = h, W’,(kP) + g(kP) 

(20) 

W,(k + l)P = h, W,(kP) + g(kP) 

with the temperature u(x, kP) at any location x given by 

u(x, kP) = P W&P) + H,,(x) W,(kP) + . . 

+ Hz&) W,(kP). (21) 
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Hence for any value of x desired the discrete-time equations for 5 terms retained and P = @0020 There is very little 
may be obtained. Actually one may proceed directly from benefit in retaining for this particular case more than 5 terms 
the characteristic solution as given by equation (7) and in the series. The method of trial and error is perhaps the 
write the state equations once a value of the sampling period simplest to employ since the sampling period may be readily 
P has been chosen and also the number of terms 4 in the changed by merely changing one card in the program: also 
infmite series, as the coefficients hj follow a regular pattern extra terms may be readily added from the infinite series 
and the coefficient associated with the input g(kP) is always as the equations for each term follow a distinct pattern. For 
unity. certain cases where the dimensionless time required to heat 

i 

I 
I H,,(x) 

FIG. 1. State variable diagram for u(x, kP). 

It is seen from equations (20) that at equlibrium, the state 

variable W, is the only nonzero state since at equilibrium 9 

must equal zero. Hence any nonzero initial condition as 

given by equation (2a) may now be imposed on the state 

equations as given by equations (20) and (21). Hence it 

follows from equation (21) that 

or cool the slab is long, then for these cases the sampling 

period may be increased considerably as the input function 

g(kP) is relatively slow changing and hence one need sample 

W,(O) = UJP 

and also from equations (20) that 

(22) 

WAO) = 0, j= 1,2 ,._., q. (23) 

Hence starting with any initial condition for the tempera- 

ture the solution proceeds in a straightforward manner using 

a digital computer. For the parameters as considered by 

Crosbie and Viskanta [l], the results were in excellent 

agreement. For most cases the sampling period was taken 
to be 0.0010 and 7 terms were retained in the infinite series. 

The results were obtained directly and hence no iteration 

techniques were needed. The accuracy is dependent upon 

the sampling period chosen and the number of terms retained 
in the infinite series. In Table 1 is shown the results for 7 

terms retained and P = 0OOlOalong with the results obtained 

Table 1. Comparison of solutions using the sampled-data 
model with those of Crosbie and Mskanta [l] for N,, = 0.4, 

N, = 0.5 and 4 = @2 

Surface temperature ~(1, t) 
Time (t) Crosbie and Viskanta Case A* Case B* 

O+XI 0.2OQO 0.2000 0.2Ocil 
0.25 0.5563 0.5564 0.5566 
0.50 0.6670 0.6671 0.6672 
0.75 0.7488 0.7489 0.7490 
100 0.8115 0.8116 0.8117 
1.25 0.8592 0.8593 0.8594 
1.50 0.8951 0.8951 0.8952 
1.75 0.9219 0.9219 0.9220 
2.00 0.9419 0.9419 0.9420 

Case A* is for P = OGOlO with 7 terms retained while 
Case B* is for P = 00020 with 5 terms retained in the 
infinite series. 
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less frequently than for cases where the function g(kP) is After time and magnitude scaling the equations were 
changing faster with respect to time. Also the effects of time programmed on an analog computer and gave essentially 
varying fluid and environmental temperatures as well as the same results as for the discrete-time equations. It was 
having the radiation exchange factor and the heat-transfer not observed but it would be expected that the analog model 
coefficient explicit functions of the surface temperature may equations would give slightly better results as we have a 
be simply incorporated into the system model equations by continuous monitoring of the input signal g(t). However, 
merely changing the g(kP) expression. The remainder of the since the sampling period P was chosen so small (0.0010) 
program remains the same. little or no difference was detected. 

CONCLUDING REMARKS 

CONTINUOUSTIME MODEL EQUATIONS 

The discrete-time equations as given by equations (20) 
and (21) may be readily converted to a system of continuous- 
time equations for analog computer study. Knowing the 
sampling period P the conversion process leads to the 
following set of equations 

dWi(t) 
- = ~?,i+# + Big(t) dt 

where 

(hi - 1.0) 
&------_- 

P ’ 
i = 1,2,...,q (25) 

Bi = 1.0/P = B for all i (26) 

and 
1, = 0.0. (27) 

Hence the matrix form of these equations is given by 

It has been shown how a representative sampled-data 
system of equations representing a distributed parameter 
system lends itself to readily obtainable solutions using 
either a digital or analog computer. The state equations in 
the variables IV are seen to represent each eigenvalue 
retained in the infinite series, and also the term t which 
appears explicitly in the solution of equation (1) with the 
given boundary conditions. Hence each state equation 
retained represents the contribution of the particular 
eigenvalue to the overall temperature response of the system. 
Results obtained were in excellent agreement with published 
results. 
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